Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Cancer Discov ; 13(7): 1556-1571, 2023 07 07.
Article En | MEDLINE | ID: mdl-37068173

Molecular modifiers of KRASG12C inhibitor (KRASG12Ci) efficacy in advanced KRASG12C-mutant NSCLC are poorly defined. In a large unbiased clinicogenomic analysis of 424 patients with non-small cell lung cancer (NSCLC), we identified and validated coalterations in KEAP1, SMARCA4, and CDKN2A as major independent determinants of inferior clinical outcomes with KRASG12Ci monotherapy. Collectively, comutations in these three tumor suppressor genes segregated patients into distinct prognostic subgroups and captured ∼50% of those with early disease progression (progression-free survival ≤3 months) with KRASG12Ci. Pathway-level integration of less prevalent coalterations in functionally related genes nominated PI3K/AKT/MTOR pathway and additional baseline RAS gene alterations, including amplifications, as candidate drivers of inferior outcomes with KRASG12Ci, and revealed a possible association between defective DNA damage response/repair and improved KRASG12Ci efficacy. Our findings propose a framework for patient stratification and clinical outcome prediction in KRASG12C-mutant NSCLC that can inform rational selection and appropriate tailoring of emerging combination therapies. SIGNIFICANCE: In this work, we identify co-occurring genomic alterations in KEAP1, SMARCA4, and CDKN2A as independent determinants of poor clinical outcomes with KRASG12Ci monotherapy in advanced NSCLC, and we propose a framework for patient stratification and treatment personalization based on the comutational status of individual tumors. See related commentary by Heng et al., p. 1513. This article is highlighted in the In This Issue feature, p. 1501.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mutation , NF-E2-Related Factor 2/metabolism , DNA Helicases/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics
2.
Hypertension ; 67(3): 613-22, 2016 Mar.
Article En | MEDLINE | ID: mdl-26781284

Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability. In a rabbit iliac artery overdistension model, there was unusually high PDI upregulation (≈25-fold versus basal, 14 days postinjury), involving both intracellular and pecPDI. PecPDI neutralization with distinct anti-PDI antibodies did not enhance endoplasmic reticulum stress or apoptosis. In vivo pecPDI neutralization with PDI antibody-containing perivascular gel from days 12 to 14 post injury promoted 25% decrease in the maximally dilated arteriographic vascular caliber. There was corresponding whole-vessel circumference loss using optical coherence tomography without change in neointima, which indicates constrictive remodeling. This was accompanied by decreased hydrogen peroxide generation. Constrictive remodeling was corroborated by marked changes in collagen organization, that is, switching from circumferential to radial fiber orientation and to a more rigid fiber type. The cytoskeleton architecture was also disrupted; there was a loss of stress fiber coherent organization and a switch from thin to medium thickness actin fibers, all leading to impaired viscoelastic ductility. Total and PDI-associated expressions of ß1-integrin, and levels of reduced cell-surface ß1-integrin, were diminished after PDI antibody treatment, implicating ß1-integrin as a likely pecPDI target during vessel repair. Indeed, focal adhesion kinase phosphorylation, a downstream ß1-integrin effector, was decreased by PDI antibody. Thus, the upregulated pecPDI pool tunes matrix/cytoskeleton reshaping to counteract inward remodeling in vascular pathophysiology.


Coronary Stenosis/genetics , Coronary Vessels/pathology , Protein Disulfide-Isomerases/genetics , RNA/genetics , Vascular Remodeling , Animals , Cell Membrane/metabolism , Cells, Cultured , Coronary Stenosis/metabolism , Coronary Stenosis/pathology , Coronary Vessels/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Humans , Male , Phosphorylation , Protein Disulfide-Isomerases/biosynthesis , Rabbits
...